Applying robust design to study the effects of stratigraphic characteristics on brittle failure and bump potential in a coal mine
نویسندگان
چکیده
Bumps and other types of dynamic failure have been a persistent, worldwide problem in the underground coal mining industry, spanning decades. For example, in just five states in the U.S. from 1983 to 2014, there were 388 reportable bumps. Despite significant advances in mine design tools and mining practices, these events continue to occur. Many conditions have been associated with bump potential, such as the presence of stiff units in the local geology. The effect of a stiff sandstone unit on the potential for coal bumps depends on the location of the stiff unit in the stratigraphic column, the relative stiffness and strength of other structural members, and stress concentrations caused by mining. This study describes the results of a robust design to consider the impact of different lithologic risk factors impacting dynamic failure risk. Because the inherent variability of stratigraphic characteristics in sedimentary formations, such as thickness, engineering material properties, and location, is significant and the number of influential parameters in determining a parametric study is large, it is impractical to consider every simulation case by varying each parameter individually. Therefore, to save time and honor the statistical distributions of the parameters, it is necessary to develop a robust design to collect sufficient sample data and develop a statistical analysis method to draw accurate conclusions from the collected data. In this study, orthogonal arrays, which were developed using the robust design, are used to define the combination of the (a) thickness of a stiff sandstone inserted on the top and bottom of a coal seam in a massive shale mine roof and floor, (b) location of the stiff sandstone inserted on the top and bottom of the coal seam, and (c) material properties of the stiff sandstone and contacts as interfaces using the 3-dimensional numerical model, FLAC3D. After completion of the numerical experiments, statistical and multivariate analysis are performed using the calculated results from the orthogonal arrays to analyze the effect of these variables. As a consequence, the impact of each of the parameters on the potential for bumps is quantitatively classified in terms of a normalized intensity of plastic dissipated energy. By multiple regression, the intensity of plastic dissipated energy and migration of the risk from the roof to the floor via the pillars is predicted based on the value of the variables. The results demonstrate and suggest a possible capability to predict the bump potential in a given rock mass adjacent to the underground excavations and pillars. Assessing the risk of bumps is important to preventing fatalities and injuries resulting from bumps.
منابع مشابه
Probabilistic analysis of stability of chain pillars in Tabas coal mine in Iran using Monte Carlo simulation
Performing a probabilistic study rather than a determinist one is a relatively easy way to quantify the uncertainty in an engineering design. Due to the complexity and poor accuracy of the statistical moment methods, the Monte Carlo simulation (MCS) method is wildly used in an engineering design. In this work, an MCS-based reliability analysis was carried out for the stability of the chain pill...
متن کاملApplication of an integrated decision-making approach based on FDAHP and PROMETHEE for selection of optimal coal seam for mechanization; A case study of the Tazareh coal mine complex, Iran
Increasing the production rate and minimizing the related costs, while optimizing the safety measures, are nowadays’ most important tasks in the mining industry. To these ends, mechanization of mines could be applied, which can result in significant cost reductions and higher levels of profitability for underground mines. The potential of a coal mine mechanization depends on some important fact...
متن کاملStudying Relationship between Coal Intrinsic Characteristics in Spontaneous Combustion of Coal Potential Using Crossing Point Temperature Test Method
Spontaneous combustion of coal is one of the most horrifying hazards in coal industries, especially in underground coal mines. Thus having a prior knowledge about the occurrence of this phenomenon in underground coal mines is of crucial importance in preventing this process, loss of life, huge economic loss, and environmental pollution. The aim of this work is to determine the spontaneous combu...
متن کاملFundamentals of 3D modelling and resource estimation in coal mining
The prerequisite of maintaining an efficient and safe mining operation is the proper design of a mine by considering all aspects. The first step in a coal mine design is a realistic geometrical modelling of the coal seam(s). The structural features such as faults and folding must be reliably implemented in 3D seam models. Upon having a consistent seam model, the attributes such as calorific val...
متن کاملA comparison between effects of earthquake and blasting on stability of mine slopes: a case study of Chadormalu open-pit mine
Dynamic slope stability in open-pit mines still remains a challenging task in the computational mining design. Earthquake and blasting are two significant sources of dynamic loads that can cause many damages to open-pit mines in active seismic areas and during exploitation cycles. In this work, the effects of earthquake and blasting on the stability of the NW slope of Chadormalu mine are compar...
متن کامل